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ABSTRACT

This paper discusses three different estimation methodologies on gathering auxiliary
information available at different stages of a survey under a two-stage sampling set-up. In
order to make a comparative study of the discussed methods, we compare performances of
three different classes of estimators based on these methods available in the literature.

Key words: Asymptotic variance, auxiliary variable, two-stage sampling.
AMS Subject Classification : 62 D05

--
I. INTRODUCTION

Define(SRSWOR).replacement
_ 1 ~
Yj =-LJJ'es Yij ,m. I,

- II - - II - d II XY =- . ajY;> x =- . ajXj an tx =- . a j j'
n ~ n'8 n ~

without

Consider a finite population V = {1, ...,i,...,N} of N first stage units (fsu) such that the

ithftu U, ={1,...,j,...,Mj}containsMjsecond stage units (ssu) andM =I:IMj' Let Yij

and xij denote the values of the study variable If and an auxiliary variable a; for the jth ssu of

- 1 ~M/ - 1 ~M/ - 1 ~N -u, (j =1,2,...,Mj ; i =1,2,...,N). Let 1'; = M. L...j=IYij '~j = M. LJj=lxij ,Y = N LJj=l aj1';
I ,

- 1 ~N - . -
and X = N LJj=1 a.X, where a j = NMj / M. To estimate the population mean Y, let us

assume that a sample s (s c V) of n fsus is drawn from V and then a sample Sj (s, c Vj) .

of m j ssus from the selected Vj, i E s, according to the design simple random sampling

_ 1 ~
x, =~ LJjes/ xij ,,

In two-stage sampling, precision of an estimator not only depends on the strength of
the relationship between If and a: but also on how well the kind and extent of the available
auxiliary information can be utilized at different stages. Many different cases can be
considered according to the nature of the available auxiliary information [see for example,
Sarndal, Swensson and Wretman (1992, p.304)]. But, here we are confined to two cases only.
In case A, emphasis is given on the availability of overall population mean or total of a:. In
case B, it is assumed that the mean or total of a: for the selected Ui, i E S , is either known or

can be known easily or inexpensively. In survey sampling literature, a great variety of
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estimation techniques consider only case A. Therefore, these techniques may not fully
exhaust the information contents of the auxiliary variable. On the other hand, case B has also
some practical merits. Because, when fsus are selected, information on means or totals of a;

for the selected fsus can be easily obtained from the available records on administration,
geographical area, or from demographic sources, a census or a current population survey. As
an example, we may refer to a crop survey where If and a; are respectively the yield of a crop
and area under the crop. Then information on the total crop area for each selected block
(cluster of villages considered asfsus) can be obtained easily from the block records.

The subject matter of this paper is to discuss and compare three different estimation
methods viz., classical method, chain method and predictive method. On the use of auxiliary
information, the classical method considers case A while the other two methods are based on
the consideration of an amalgam of cases A and B. To make a comparison between the said
methods, we compare the performance of three different classes of estimators of Ybased on
each of these methods which are already available in the literature.

II. CLASSES OF ESTIMATORS UNDER STUDY

2.1 Class of Classical Estimators [Srivastava (1980)]

The class of estimators of Srivastava (1980) is defined by

tc =h(y, x) ,

where (y,x) E R2 , a subspace of the 2-dimensional real space containing the point (f,X),
h(y,x) is a known function of y and x such that h(f,x)= f, and the function h satisfies

the following regularity conditions:

(a) It is continuous inR2

(b) The first and second order partial derivatives of the function with respect to y and x
exist and are also continuous in R2 •

An expression for the asymptotic vanance of t., derived through the Taylor

linearization method, is given by:

V(tJ = A(S~ +h I
2S; +2hISyJ +-

1- I : a;2A;(S;~ + JzI2S~ +2hIS;yx ), (2.1)
. 1ll\T I-I
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(2.2)

The asymptotic minimum variance bound (MVB) and the resulting minimum variance
bound estimator (MVBE) of tc are given by

. 2( 2) I ~N 2 2( 2)mmV(tJ = ASy I-pc + nNLJj=lajAjSjy I-pc

where Pc is the correlation coefficient between j and F , and Pc is the regression coefficient

ofyon X.

2.2 Class of Chain Estimators [Sahoo and Panda (1997)]

For any arbitrary second stage sample spi E S, let (Yi'xj) assume values in R2
containing the point (f;,XJ and J;(Yi' xj ) be a function of (Yi' xj ) such that J;(f;,X;) =f; .

Further, for a given first stage sample s, let (ty,t x)' where t, =~~. a.f, (Yi'x;) , assumen LJ'ES

values in R2 containing the point (f,x) and f(ty,tJ be a function of (ty,tJ such that

f(f,X) = f. Assuming that the functions J;(Yi'x;),i E S, and f(ty,tx) admit Srivastava's

(1980) regularity conditions, the class of estimators of Sahoo and Panda (1997) is defined by:

ts = f(ty,tx)'

The formula for the asymptotic variance of ts is given by:

V(tJ=A(S~ + f?S; +2.t;Syx) + n~L:ta;2A;(S;~ + J;~S~ +2J;tS;yJ, (2.3)

oJ; of
where J;\ =-' and .t; = - .Hence, the MVB and the corresponding

OX. _ _ - - ot - -
, (y/.x/)=(yj.xtl x (ty.'x)=(Y'X)

MVBE of the class can be obtained as

. 2( 2) 1 ~N 2 2( 2)mmV(ts)=ASy I-p + nNLJ;=\a;A;S;y I-p;

and (s) - 1L r~ P (- -X )~-p ( -X)tRG -- . a; 1)'; + ;yx x; ; ~ yx tx ,n 'ES

(2.4)

where p, =S;yx/S;ySjx' p =Syx/Sy s, ,P;yx ~ S;yx/S~ and Pyx =Syx/S;. This regression

estimator was also considered by Sahoo (1987).
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A class of estimators, that can be easily developed by utilizing prediction criterion
given in Basu (1971, p.212, example 3) and subsequently studied by Sampford (1978). As a
starting point, let us express the quantity Y in the following form:

- 1 fL { - ( )-}] N - n -Y =- . m;y; + M; -m; 1';, +--Y"M IES N
(2.5)

where (N -n)y" ="". _a)i; and (M; -m;)Y;, =,"". _y;; . According to this expression, we
~~ ~J~ • .

A

define a predictor Y for Yas:

y=_1r". {m.y-. + (M. -m.)1'.}]+ N -n 1',M IL,Es I I I I I N

where 1'; (i E s) and T are the respective predictors of Y;, and y,..

(2.6)

For the realized samples s; and s, let ei =(Yi'Xi,Xi,) and e =(y,tx'X,) assume

values in R3 containing the points E; =(Y;,X;,X j ) and E =(Y,X,X), where

(N-n)X,=""._a;X;, (M;-m;)=""._x;;. Further.v let g;(e j ) and gee) be some
~/ES LJJES, •

functions of e; and e respectively such that g; (E; ) = Y;, i E s, and g(E) = Y, and these

functions satisfy Srivastava's regularity conditions. Thus, based on information available
through s, and s, g;(eJ and gee) clearly define classes of estimators for y;,i E s, and

Y respectively. Hence, on using g;(eJ and gee) as predictors in places of 1'; and T in our

predictive equation (2.6), we may define a class of predictive estimators for Yby:

'» =_1r". {m;y; +(M; -m;)g;(e;)}]+ N.-n g(e) ,
M IL,Es N

with an asymptotic variance expression:

V(t p)=,1,(S:+2g,Syx+g;S;) + n~L:,a;2,1,;(s;~+2~i1S;yx+B2g;~s~), (2.7)

n _ ag;
where B=-, g - =. N;' - ax.

I e/=E/

~; ~ ~- and g I =- =---=- . Thus, we note that
ax;, e.=E. atx e=E ax, e=E

I I

the MVB and the corresponding MVBE of tpare:

minV(tp ) =minV(t,)

and t(p) - t(s)
RG - RG'
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•
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Now, it seems necessary to make a good choice among the three classes of estimators
defined by te , tsand tp on the basis of certain performance criteria. But, as the literature to

date offers little guidance in this choice, here for simplicity, we accept efficiency as the
performance benchmark. With this performance tool, while comparing the analogous
expressions (2.1), (2.3) and (2.7), we obtained sufficient conditions (suppressed to save
space) under which one class could be claimed to be more efficient than others. But, these
conditions depend heavily on the choices of various functions involved in composing of the
classes and therefore cannot lead to any meaningful conclusions unless natures of these
functions are clearly specified. Hence, to avoid this difficulty in direct comparison of
efficiencies, we compare the classes by judging the (i) efficiencies of MVBEs, and (ii)
efficiencies of similar/equivalent estimators.

3.1 Efficiencies of the Minimum Variance Bound Estimators

By accepting efficiency of MVBE as an intrinsic measure of efficiency of a class, we
concentrate on the comparison of MVB expressions given in (2.2), (2.4) and (2.8). From
these expressions, we now get:

min V(t p) = min V(ts):::;; min V(te)

i.e., t~~ and t~J are more efficient than t~~ if

Pe 5. P and Pi Vi. (3.1)

Hence, we may conclude that in respect of MVB criterion and under the conditions (3.1),
both chain and predictive methods are superior to the classical method. However, on this
ground no conclusion can be drawn regarding the efficiency of chain method over predictive
method or vice versa.

3.2 Efficiencies of Equivalent Estimators

The primary purpose here is to select similar or equivalent type estimators belonging
to different classes and then to make a comparative study of these estimators in respect of
efficiency. But, for this selection, among the various available alternative estimators, we
consider only those estimators having either standard ratio or standard regression features.

The regression estimator considered in Sukhatme et al. (1984, p.233) is defined by:

t RG =Y-Pyx(x-X).

Expressing tRG in a different form as:

we note that the estimator comes out as a common member ofboth te and t..
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Sahoo and Panda (1999) developed a predictive regression-type estimator:

tPRG.:". a;[y; -o;(x; -XJ]-Pyx(tx -X),n L..JIES

that can be easily viewed as a special case of tp' where 0; = PYX - f)(pyX - P;yx).

...

(3.2)

(3.3)

it can be easily checked that tPRG is more efficient than tRG •

Turning our attention to ratio-type estimators, we consider the following estimators as
particular cases of tc , tsand tp respectively:

Classical ratio estimator : tR = ~ X
x

1.." a. y; X.
n L..Jies I - I

Chain ratio estimator : tCR = x; X [Murthy (1977, p.390)]
tx

Predictive ratio estimator: t pR = tR + f) I. a;(~; -~Iv; [Sahoo and Panda (1998)]
n IES ». xr

Asymptotic variance expressions of these estimators are as follows:

v-

..

1 IN 2 (2 2 2 )V(t R ) = VR +- ._ a; A; s; +R Six -2RS;yx
nN I-I "

1 IN 2 (2 2 2 )V(t CR ) = VR +- a. A. S. +R. S. -2R.S.nN ;=1 I I Iy I IX I IYX

1 IN 2 (2 2 2 )V(tPR) = VR +- ._ a; A; s; +fA Six -2fAS;yxnN I-I r

(3.4)

(3.5)

(3.6)

(
2 2 2 ) -; - -/-where VR = A. Sy +R Sx -2RSyx , R =Y X, R; = Y; X; and fA =R -B(R -RJ. From

these expressions we obtain:

(3.7)

(3.8)

(3.9)
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.. Hence, V(t CR) ~ VetR)' V(t PR) s VetR) and V(tCR) s V(t PR) if P;yX s t(R + R;), t(R+ ¢;)

and t(R; + ¢;) respectively provided R > R;, Vi. These results may be more compactly

stated as follows:

When R > R;, Vi, V(tCR) s V(t pR)s V(t R) if
P;yX s HR; +¢;). (3.10)

•

The requirement R > R; need not be fulfilled for all fsus in U but for at least a majority of

fsus.

We also examine the relative efficiencies of tR'tCRand tPR under a super population

model considered by Pfeffermann and Nathan (1981). The model assumes that:

Yij =P;Xij +eij' j =1,2,...,M;;i =1,2,...,N,

with E(eij / xij) =0, E(e~ / xij )=a} and E(eijekl / xij' Xkl ) =0, if either i,* j or k '* I or both.

Further, following Scott and Smith (1969), let us assume the following random effects model
for the P; 's :

P; = P+ u., i = 1,2,...,N ,

such that E(v;) =0, E(V;2) =8 2 and E(v;v}) =0, i,* j.

Under the model, after a considerable simplification, we derive the following
expressions:

•

...

(3.11 )

(3.12)

(3.13)

These expressions are always positive. Thus, it seems that under the discussed model:

V(t CR)s V(t PR ) s V(t R)·

In concluding this section, note that predictive regression estimator appears to be
more efficient than other regression estimators whereas' chain ratio estimator appears to be
more efficient than other ratio estimators. This leads to an important conclusion that the chain
method is preferred to others if the population regression .line of 'I on a: is linear and passing
through the origin. Otherwise, the predictive method may have an increasing advantage over
others.
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IV. A SIMULATION STUDY
..

In this section, we report the results of a simulation study that was carried out to
compare efficiencies of different estimators discussed in the preceding sections. We
considered three sets of benchmark data of the MU 284 population consisting of M = 284
municipalities (ssu) divided into N = 50 clusters ifsu) available in Samdal, Swensson and
Wretman (1992, p.652). The two variables for these data were as follows:

Data Set I : If = Revenues from the 1985 municipal taxation, x = Number of Social
Democratic seats in municipal council.

Data Set II : If =1985 population, x = 1975 population.
Data Set III : If = Number of municipal employees in 1984, x = Total number of seats in

municipal council.

Our simulation consisted of 1000 independent first-stage samples each of size n = 16.
From every selected U, (i = 1,2,...,16) in a first-stage sample, a second-stage sample of

m j = 2 ssus was again selected. Thus, we had 1000 independent samples each of size 32

ssus. For each sample from 1 to 1000, values of the comparable ratio and regression
estimators were computed and then their simulated mean square errors were calculated.
Relative efficiencies of different estimators compared to the direct estimator yare displayed
in table 4.1.

Thus, as expected, t~~ leads to substantial increase in efficiency over others. On the

other hand, t PRG turns out to be more efficient than other regression estimators. Among the

ratio estimators, the chain ratio estimator t CR has a better performance than others. Although

the findings of this empirical study agree with our theoretical findings, the scope is limited
and may not fit other situations.

Table 1 : Relative Efficiencies of the Estimators wrt y

Data Ratio Estimators Regression Estimators
Set t R t eR t pR

t(c) t(s) t RG t PRGRG RG

I 137 149 143 125 163 107 126
II 159 204 181 -165 192 149 179
III 118 135 121 110 144 121 139
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